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I. - _Introduction

S

This document is intended to serve as a supplement to TM 33-168, "The Orbit
Determination Program of The Jet Propulsion Laboratory", by R.H. Hudson, M.W. Nead,
and M.R. Warner. It attempts to provide a more detailed description of the theoretical
‘ ‘ basis of the orbit determination program (ODP) than is given in TM 33-168, but it is
not strictly necessary to read the material presented here in order to achieve an

ability to operate the program. However if one is interested in the derivation of

formulas used by the ODP or if information on the basis of particular computational
techniques is desired, then this document can be of some use.

In its present form, that is as a Section 312 Technical Memorandum, this
document is available to JPL personnel only. Eventually we intend to release it
along with TM 33-168 as a Technical Report for wider distribution. ;l’herefore any
suggestions pertaining to additions to the content or corrections to erroneous
material would be appreciated by the author. Unfortunstely the notation of TM 33-168
and this memorandum are not the same, although when the two documents are released in

the Technical Report form the notation used here will prevail. The notation used

, ‘ has been described in TM 312-407, "The Standard Nomenclature for Orbit Determination®,

A
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by J.D. Anderson, P.R. Psabody, and M.R. Warner, and as such will probably be

included in the proposed Technical Report as a table of nomenclature.

II. Statistical Model

The ODP uses a weighted least squares parameter estimation procedure
with the refinement that a-priori information on the parameters along with their
statistics exert an influence on the estimate. In this form the procedure is often
called Bayes estimation and it provides considerable flexibility in that the data
from a particular experiment can be partitioned into blocks so that the estimation
of parameters for a current block of data can be combined with all previous data
blocks through the introduction of the a-priori information. Thus for problems in
space flight it is possible to perform the orbit determination in a series of phases.
For example on a planetary mission the data from the portion of the flight where
the sun dominates the probe might be reduced first with an epoch for the position and
velocity parameters (the initial conditions) taken sometime near injection into the
heliocentric orbit. Next the parameters and their covariance matrix could be mapped
forward to a new epoch at a time shortly before planetary encounter. These mapped
quantities would then represent a-priori information for the reduction of data
taken when the probe was dominated by the target planet. The advantages in splitting
the flight up into these two parts are 1. there is a numerical advantage in that the
data is less sensitive to variations in the initial conditions taken at an epoch not
too far removed from the times of observation and 2. by separating the problem into
two parts, the heliocentric and planet centered data can be analized more or less

independently, thus giving the analyst considerably more flexibility in the post

flight reduction of the data.
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In the formulation of the parameter statistics, an attempt is made to
provide a fairly realistic parameter covariance matrix which will depend on the
a-priori parameter covariance matrix and on the assumptions as to the statistical
model for the data. Also the ystmtic errors introduced by leaving out important
};:arameters in the solution for the parameter estimate are included in a statistical

sense.

A. Estimation Formula

Although summation notation is used in the definition of the normal
equations in Section II B of TM 33-168, it is easier to justify the use of various
expressions in that section with matrix notation instead. The summation notation
as given is indicative of the computational technique used in the processing of
the data [z(l), z(z),...,z(N)] , namely the matrices J and { are construtted
sequentially through the single summations. However in matrix notation the

weighted sum of squares of the residuals can be written

s=Q-Twl- 2 (1)

where the residulas (£ - _z,) are arranged in an N x 1 column matrix and the

weighting matrix Wis an N x N diagonal matrix.

2(1) - z(1) “(1) 0 ...0
$ -5 8(2) - 2(2) we | 0 w(2)...0
(N) £ 2(N) O b . )

The elements of ﬁ are the actual observations while those of z represent

the computed values as a function of the parameters x which are subject to estimation.
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z = z(x) (2)

The equations of condition relate variations in g to variations in x through

the variational matrix Ax'

bz = A 6x (3)

If there are M parameters in x then A is an N x M matrix and in terms of the
M x 1 matrices g(i) defined in Section II B of TM 33-168 it can be written in a

partitioned form.

The a-priori term which enters in the normal equations arises from a
consideration of the a-priori values Z of the parameters as additional observations
with residuals given by X - x. Thus the weighted sum of squares of all the residuals

is written

~ T- -1 ,~
e=¢-2"Wd-0+GE-0"1,7 G-» ()
where [ x-l is an M x M generally non diagonal weighting matrix for the Z
observations. The inverée matrix I‘x is interpreted as a covariance matrix on
the a-priori parameters X .

*
Now a minimization of Q defines the parameter estimate x in the orbit

determination program. The first variation in Q is
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Q=- 2ot Wl -2 -2 L GE- p) (5)
or from Bq. (3)
LR T BN el e ) (6)

and in order that Q be stationary for arbitrary parameter variations &x it is
necessary that the term in braces be null. Without discussions of uniqueness or

maxima versus minima points the parameter estimate 5* is defined by
T * P R
ACW[E- )] +NT E-x) =0 0

From a practical viewpoint all that is required of g* is that it provide an
. absolute minimization of Q. The fact that it will also satisfy Eq. (7) is
incidental. However an ;_* can be found as a solution to these M non linear
algebraic equations in the M unknown parameters; numerical methods are used to
actually obtain the solution. First of all a function of x is defined as a

column matrix of the form
‘xr W[Q - &(a)] + ;;l (T -x) =1£(x) + Fx'l (x - x) (8)

The solution to Eq. (7) is obtained by the Newton-Raphson procedure which gives
* * *
x (n+l), the value of x at the mtl st iteration, in terms of x (n) at the nth

iteration. The procedure requires the first variation of equation (8)

PR e T ~a .
8 [_{(_Jg)'*'l'x (§~§)]“-Ax W5_§-Fx16_15 (9)
or with Eq. 3
. T Tl T = -1
A" Weg+T & (Ax WA +T ) & (10)
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Actually the matrix Ax is itself a function of x and there is therefore an
additional variation in Eq. (9). It is also possible to construct situations
where the data weights in W depend on x; they may be functions of g, the computed
data matrix. Howsver these variations are neglected in the formation of Eq. 10
and in fact experience has shown that the convergence to the solution _15. is not
adversely affected by the neglect of the variations in Ax and W. Therefore, the
iteration formula that is used to obtain the weighted least squares estimate of

the orbit is given by

@+r M [ -5 )] -2 + T, [F - 5" w)] S
where
T
J=A WA (12)
£f(n) = A W{Q -2 x(n) (13)

The matrix A is evaluated for x = x(n) in the above definitions so far as the

program is concerned. Actually this is not always necessary to achieve convergence.

B. Parameter Covariance Matrix
To obtain an expression I'x for the covariance matrix on the parameter
estimate g* a linearity assumption is introduced. Suppose that the actual
values x for the parameters were inserted in the iteration formula (12). Then
an estimate of the parameters would be computed that would differ from the actual

parameters by 5* - x and in fact the linear expreasion for this difference is
given simply by Eq. (11) above.

WAL G - =g+r  F-n) (14)

134
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Now a covariance matrix on a set of random variables x can be defined by

I'x = ax a;T where 3x is the error on x and the bar over the quantity indicates

its expected value. For example -a-x. = 0 if the error in x is distributed about
*

& zero mean. The covariance matrix on the parameter estimate x is therefore

given by

*

T
= (x )

-0 (x -x (15)

It may be somewhat confusing to take an ensemble average over (_J; -x) (5* - ;)T
when only one sample of ;* is available. However Eq. (15) expresses only a
theorstical averaging of the error _J; ~ x and thus the matrix rx represents

a model of the covariance matrix that could be computed empirically if the

space flight in question could be performed many times under exactly the same

conditions. The expression for I X is obtained by substituting Eq. 14 in Eq. 15.

<A gt PR A, s T ~-1
(3+r1, )I‘X(J+I‘x ) = £f + T (x-x) X-x) T, (16)

The expected value of { (X - ;)T and (X - x) £T is set equal to zero which
implies that there is no correlation between the errors in the a-priori values

of the parameters and the data errors. From equation (11) it is clear that
T

[ J+ rx‘l] = [J + I‘x-l ] because covariance matrices are always symmetrical.
That is

-14T _ r T TSI _, T ~-1_ ~
) woA + (T ) he WA +T (g+r,7) (17)

(J+r

Note that W is diagonal in the program but in any case it is certainly

symmetrical.
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Now expressions are needed for ;_{T and (X - x) (X - x)T. By definition

-2 G-0F =T | (18)
Before forming _E_ITT- from Eq. 15 a more general situation is considered by
recognizing that certain parameters y might be used in the formation of 2z,
but that they might not be included in the set of parameters x. In other words
the set of all parameters g that completely specifies the data z is partitioned
into the set x which is subject to estimation and the set y whose elements are
set equal to their a-priori values Y and held fixed. Thus f is actually evaluated

at_:ga.ndz

2‘*,“[2-3(5.1)] (19)
However the "true" value of z is given by z(x, y) so that again with the
agssumption of linearity

2, D =zx 1)+ 4 @-1) (20)

where Ay is defined by the relation 6z = A éx + Ay 6y. Substitute Eq. (20)
into Eq. (19) and define the error in the data by 3z = £ - z(x, y). Also the

error in the parameters y is given by 3y =¥ - Y. Then

_gquTw(a_—Ayai) (21)

Now the data covariance matrix I"z is simply az agT while that for the a-priori

~

~ ~ L
parameters y is l"y = 3y Q¢ and if there is no correlation between the data errors

and the errors on y the expected value of E is

14/
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T T ~ 7T
f£  =A W(IL +A T A
£ x(zyyy)

WA ()
Up to this point everything has been rigorous within the framework of the
stated assumptions. However an approximation is now introduced in the orb:li".
determination program, nsmely that W = rz‘l. This is valid if the data are

not correlated and if the elements of W represent the inverse of the variances
on the appropriate data. Any differences between W and Fz"l cannot be analyzed

easily with the program described here. With the indicated approximation

T T T -, T .
foy WA TATWA T ATWA (23)

Substitute Eq. (18) and (23) in (16) to obtain

= -1 -1y - -1 T ., T
(s +T, )I‘x(J+rx ) (.J+x'x )+Ax HAyr‘yAy WA ()
or finally the expression for the covariance matrix I X is
= -14-1 T-1y-1, T =, T = -1, )
I (J+l‘x ) +(J~a—r'x ) A WAyryAy 'lex(J+I‘x ) (25)

The single summations appearing in the formulas of Section II B occur because W
is a diagonal matrix. This can be illustrated by considering the calculation

of the matrix J. In general the r, s element of J would be given by

N N
dps = aZl _ aarwaﬁaﬂ'

where a.q and w__ are the rs elements of A and W respectively. However

because W is diagonal
waﬂ = aﬂ w(CX) (27)

T




PELRRA Yy b~ 31

~
©

JET PROPULSION LABORATORY -10- TECHNICAL MEMO 312-409
. 3/ /64
where h ﬁ is the Kronecker 6 - symbol. Therefore
N
s = Z &ar w(X) aas (8)
=1
or in terms of the column matrices a(i) = (au, 8y, cees B4y )
N
J= Z a(i) w(i) a’(1) (29)
i=l :

which is the form used in the program to accumulate J over perhaps several

thousand observations.

‘ C. Mapping of the Covariance Matrix
For purposes of forwarding the epoch from a time to to a later time t'i
or for the study of orbital uncertainties at a midcourse maneuver time, target
encounter time and so forth, it is necessary that the parameter covariance matrix
r x at t‘o be mapped to a parameter covariance matrix I"m at ti. The parameters m

at ti are assumed linearly related to both parameters x and y at to by the relation
; = +
m=M Sx+M by (30)

-orint.emaoterrorsing,;andi'

m =M ax+M Ay (31)

and the covariance matrix l‘m is simply

T
== (32)
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- T T T ~. T T PO |
r nxrxxx +M_ 3 Ay xy +x’axg xx +uyryxy (33)

The cross temms ax &Jl' and iu‘r are found by combining Eqs. (14) anda ('ﬂ)-

- T -1y-1 T T ~ T~
x=(I+r_) [Ax Waz - A WA Y +T, a;_] (34)
and
~T T -1y-1, T It
&y =-(I+T )" A WA ry (35)
where 3z 3g amd 3x 3y are assumed null. The other term .3y ax is the

transpose of Eq. (35)

o S

'g"-l

=~ . T S PSS |
-ryA’ WA (J+T ) (36)

IIX. COMPUTATION OF THE OBSERVABLES

In order to apply the least squares estimation formula it is necessary to
form the residuals in all the observed quantities. Thus from the current estimate
of the orbital parameters 5* a position and velocity ephemeris of the probe is
constructed. The problem then is to reduce these ephemeris values to actual observed
quantities at the time of observation. In this section the only observables
discussed are those obtained from optical and radio telescopes fixed on the surface
of the earth.

There are various angular masﬁrments obtained from both optical and radio
instruments. In addition radio telescopes can provide measurements of the range

._ between the observer and the object as well as the time rate of change of this range




JET PROPULSION LABORATORY -12- TECHNICAL MEMO 312-409
3/24/6L

measurement; or perhaps more fundamentally with respect to range rate, the time
integrated frequency of a doppler signal is measured. Optical angular observations
are referred to the earth's equatorial system. This is because accurate observations
are obtained by measuring photographs of the object taken against a star background
and the stars used for reference on the plate are given in the star atlases in terms
of equatorial coordinates. However for radio telescopes the angular observations

are obtained directly by recording the direction in which the antenna is pointed and
in this situation the angles obtained will be equatorially referenced if the antenna
is polar mounted like an astronomical telescope, but for an azimuth-elevation mount,

such as in a theodolite, the angles will be referenced to the observer's horizon

system.
-A. Range and Range Rate
The basis of the various geometric data types is the topocentric range
vector p from the station to the probe. Let r be the geocentric position vector

of the probe and R be the geocentric position vector of the station.

robe

station

geocenter

Figure 1

Thus
p=r-R 37)

LAy

L
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and the range rate vector p is

.

p=i-k (38)
The ranges is the magnitude of p

2

PF=p-p (39)
and a differentiation with respect to time gives the range rate p .

-

po=p-d (10)
B. Angles
When angles are used as data the particular coordinate system used to
specify p becomes important. First of all consider the equator of the earth as
the reference plane and let the z axis point to the north celestial pole. In
addition let x point to the vernal equinox 7 and let y complete the right
handed cartesian system of coordinates.
ﬁorth

g, 3'
genith

x \X'

r Figure 2

Now a second topocentric set of coordinates is defined such that z), .points to the
zenith of the station, X, is in the plane of the meriaian of the station, in other

words the plane defined by £ and L and again Tn completes the right handed system.
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In order to simplify the transformation between (x, y, z) and (xh, A zh) the

x, axis is directed towards the south. Thus only two rotations are required for

the transformation. First rotate the x axis towards y about = through the angle
6 to obtain x', y' ana g' = 2.

x! cos 8 sin® O x
y' = -sin@® <cs 8 O y (1)
z! 0 0 1 z

Now rotate z' toward x' about y' through the angle (77'/2 - ") to obtain

X ¥, =¥' and z,.

" X, sing ' 0 ~cos g * x!
zp cos @ 0 sin ¢ z'

The complete transformation is obtained by multiplying the two rotation matrices.

x sin @ cos 6 sin ¢ sin © -cos ¢ x
T = -sin © cos © ¢ y | (43)
5, cos @' cos © cos @' sin © sin ¢ z

The angle 6 is the local sidereal time at the station and it is obtained by
| adding the station longitude A to the Greenwich sidereal time © or Greenwich
hour angle (GHA) which is computed by the formulas given by D.B. Holdridge in

TR No. 32-223, "Space Trsjectories Program for the IBM 7090 Computer".

. 8 =8, + ) (44)

147 ..

r_,ﬁ
\
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Now the angle observations obviously can be interpreted in terms of the direction
of the probe or equivalently in terms of the unit vector L in the direction of

;t.hc range vector.

L= -2 (5)
== 7, 45

It is understood that the coordinate system which defines L is the equatorial
system,the coordinates of the probe and station are given in geocentric equatorial

coordinates. Therefore p is computed by Eq. 37, p by Eq. 39 and L = (Lx’Ly’Lz)

by Eq. 45. s K | :
\\
~
N '
L ~
. L
l
| L
[ , ¥ h 4
hJ ,,
|
L > /
x X \\ 'l,
——— Y
x
Figure 3

The above diagram shows the unit vector L as resolved into its three oonponehts
in the equatorial system and defines the topocentric right ascension ({and

declination 8§ in the conventional manner.

fyg
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Lx-= cos b cos(X

I.y = cos § sinCX (16)
L sin &
z

and C and § can be computed. In the ODP the declination is obtainea by

6 = sin~t L (-90°< 6 £ 90°) (47)
and the right ascension by
-1 L
X = tan —Ll- (48)

@ A
or actually with p = (g, T, ¢ ), the right ascension is computed by the

following

X= tant —151- (0 2 X < 360°) (49)

The quadrant of C{ is determined by inspecting the signs of Lx and Ly' (Note
that cos &§ 20) When using angles from polar mounted radic telescopes the hour

angle H is observed rather than the right ascension. It is defined by the relation

H=6 -(X (50)

The second set of coordinates (x, ¥, zh) defined above are useful in
computing the elevation angle 7 and azimuth o which represent angular data from
a radio telescope whose mounting is referenced to the station's horizon rather

‘ than the equator of the earth.

ewe
~X
~&
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~
~
~
Lz L
{
{
\ T | L’U
{ / In
Lx "o N ' //
~ |
~ /
_______ S
*h
Figure 4

The azimuth angle as indicated in the diagram is measured from the north

toward the east through 360°. Thus
th = ~cos 700: o
Lhy = cos Tsin o (51)

by = stn]

The components 11\:’ L'U Lhz can be computed by the transformation of l'q 43,
and ¢ and 7 follow just as ({ and & were obtained from L Ly, and Lz‘

th=anin¢‘ cosB+Lysin¢'sinO-chos¢' (52)
Lny""'x aj.ne+1.y cos 0 (53)
Lh’BLxcancoae+Lycos¢'ainG+Lzein¢' (54)

Eq. 54 can be expressed in terms of station coordinates X, Y, and Z.

157¢

R W L4311

Pt
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Figure §

Y R

X =R cos @ cos ©

Y =R cos #' sin © (55)

‘ Z =R sin @

and the alternative form of Eq. 18 is

%,’le‘(Lxx*LyY‘”LzZ) (56)

The fact that sin Tis equal to the right hand side of Eq. 56 can be seen
immediately by considering the meaning of the scaler product L s R. Note

that the vector R points to the geocentric zenith.

e

*R=Rcos (L, R) =R cos ('ZTT'°7)
or : (57)

L °R=Rsin)/

RECROER fg, 6~ 31/
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C. Time of Occultation
The time of occultation Tocc when the probe disappears behind a body of
radius a, is also a data type and must be computed by an iterative technique.

Consider the general situation where the probe is located at any point in space.

station

Figure 6

The angle ( [3 - ﬂ p) represents the angular distance of the probe from the
assumed spherical body whose topocentric position is given by _pp . Now this
angle is a function of time because of the motion of the probe, the body ana

the station.
B- B, =1t (58)

However the particular value of time where f(t) = 0 is the required time of

occultation, and therefore T

oce &R be found by the Newton - Raphson iteration

formula

(n) - f trocc(n)‘]

TOCC(M]‘) = TOGO £ [T (n)] (59)
occe
°r (n) -
T () =T () - B S (60)

oce cee ™" Bim) -f )
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where ﬂ(n), ﬂp(n), Y,B(n) and ﬂp(n) are all evaluated at T  (n)
from the uILIA iteration. From figure 5 ‘

a
sin - —P 61
B 3 (61)
where
.2l= . .
P gp [ (62)
Also
P° P
cos = =—=P (63)
PP,

The vector _p.p is evaluated by subtracting the geocentric position of the station
from that of the body. Now the time derivatives of /8 and /B p are required.
Differentiate Eq. (61) and obtain

. 0 P a
L=t =2 (60)
P P | pp pd‘-a
P P P
whers
Ppbp=_pp-gp (65)

Similarly ,8 is obtained by aifferentiating Eq. (63)

PP, sinﬂﬂ =(5pp+96p) cosﬂ - (e --‘Ep-i-é - p.) (66)

Py

Of course light time corrections must be applied in computing both (p, ) ana

( L -ép) ; the time T __ is recorded by the station as the time when the signal

from the probe sither ceases or commences again after e silence. Clearly from

153
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the diagram there are two solutions for Tocc’ one when the probe is occulted

and another when it comes out from behind the body. Thus the initial guess

to T determines which solution the formula (24) will give. The procedure is

to use the actual observed values of the two times as first guesses. It has

been found that they are sufficiently close to the solutions so that no difficulty

is encountered in separating the two values of Tocc‘
Besfore proceeding to the observables which concern radio measurements only,

we point out that there is an entire area in the field of classical orbit

determination that deals with the computation of angle residuals. This method,

often called differential representation, computes the residuals directly without

the necessity of computing the angles themselves. The subject is treated in the

;;literature and is extremely powerful when only angle observations are available.

‘However, this is seldom the case in space flight problems where range and range

rate measurements are used, and in the ODP the angle residuals are obtained

by differencing the observed minus the computed values.

D. Doppler Data

As has been stated earlier the measurement of range rate is not fundamental
to radio telescopes. Instead, the number N of cycles that an electromagnetic
wave has completed in some time interval is counted and the results are sometimes
interpreted as measurements of range rate. In order that residuals can be formed
in the actual observable, formulas are derived in this section that relate a

received frequency Vob to a known transmitted frequency v The received

tr’
frequency will in general vary with the time so that the cycle count number N

or actually the cycle count divided by the count times 7 is expressed as an integral.
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r | T =r-z F(t) at 67)
t'ob.'r

In practice this integral is evaluated numerically. The quantity f is the actual
doppler data type and is in units of cycles per second. The function F(t) depends
v

on the ratio -;Qp- . Also, there are usually various additive and multiplicative
tr

constants inserted under the integral in equation (67) to account for the
peculiarities of the electronic cycle count device used at the station.
There are many possibilities for measuring a doppler frequency Vob?
. especially when two or more observatories are involved in transmitting and
receiving radio signals. However, only two possibilities are considered here
because practically any other possibility can be derived from them. The two
considered ones are one way doppler, where a signal is sent from one point and
received at another, and two way doppler, where a signal is sent from one point
reflected off of a target and received at a sscond point. One way doppler is

applicable when the probe is equipped with a built in transmitter.

1. Cycle Count Computation
For the data type called coherent three way doppler in the ODP the

function F(t) is given by

v
- ob_
F(t) ) + ®, Vir Q - — ) (68)
tr
157§
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where ) and ®, are given constants dependent on the mechanization of the radio

equipment, k is the ratio of the frequency tranamitted by the probe to the
frequency that it receives from the ground transmitter (k =1 for reflection),

V¢

ratio of frequencies derived in this section. The formula for F(t) in the

r is the constant frequency of the transmitted signal and vob/kv is the
tr

one way case can be found in TM 33-168 and involves the ratio of the frequency
transmitted by the probe to the frequency received at the station.

Once F(t) has been specified for the particular data type of interest,
the integral of Eq. (67) can be evaluated to obtain the computed value of the
doppler observable. Rather than use standard quadrature formulas for its
evaluation, the function F(t) is expanded in a power series about the mia point
t, of the count interval (tob- TS+ 3 tob) and the result is integrated term
by term. Thus the evaluation of F(t) at several points within the interval is

avoided in favor of a single evaluation at vy
- s ) - l . e _ 2
F(t) =F(t ) + F(t ) (¢ -t )+ 2 F () (£ -¢)"+... (69)

and the integral of Eq. 67 becomes

1F'ob tn+ i T
f F(t) at = f [F(tn) + Rt ) (t-t,) + 3 f".(tm)(t~tm)2+...]dt
top™T b 3
or
t+ & T
F(t) at = 7 F(t ) + —fz i‘.(tn) +... ()
t -4

5

(70)
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Thus for coherent three way doppler Eqs. (67), (68) and (71) are combined

2 oo
v w v T v
- S WY A ob
fo3=9+ “, Ver (1 kv”) oy (‘“’m—) (72)

In the derivation of vob,‘ o terms of order higher than 1/02 are neglected.
t

to give

However in forming the second time derivative of vob,{( v terms of order higher
tr

than 1 /e are neglected in the ODP.

2. Doppler Frequency Shift
The doppler shift that occurs when a ground transmitter sends a signal
. to the probe which in turn sends the signal back to the ground where it is

received can be derived by taking the center of the earth as the origin of
coordinates. For the case where the transmitter and receiver are not both
earth based it becomes necessary to take the origin at some practically inertial
point such as thecenter of the sun. However the development is very similar to
the one given here.

Consider first the transmission from the probe at P to the station at S

and denote the geocentric origin by O.

Figure 7
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From the theory of relativity the proper time d'rp associated with the source at

P is given by
2 LN W
ar = = - - = at

where vp is the speed of P with respect to the origin O, ip is the gravitational
potential at P and again c is the constant speed of propagation of the signal.
The formula (1) states that if an observer at rest with respect to O measures a
time aifferential dtp then the corresponding time differential measurea at P is
dtp. Actually the gravitational term in the expression for d‘rp2 is only
approximate, although for the Schwarzschild metric it is accurate to order 1 /02.

‘ In the following the doppler equation itself will be developed only to order 1 /62

so formula (73) is satisfactory for the present. Analogous to P the proper time

for the station S is

2
v 2¢
b .
d‘robz = Q- °2 - ;b> dtobz (7L)
c c

at P is simply the inverse of the time

Now the transmitted frequency Vpr
increment A Tp between successive peaks of the electromagnetic wave. Similarly
the received frequency at S is the inverse of A Tob® From this point on all

time increments will be approximated by the corresponding differential expressions.

‘ It should be noted that through powers in 1 /c2

v2 ]
ar=(1-"5 - =5 )at (75)
2¢ c

~ /5"8_,




o | REORDER Mo &4/ -3/

JET PROPULSION LABORATORY 26~ TECHNICAL MEMO 312-409
3/2./64
so that
2
AT-(I--‘-'—-Z--%>A'¢-—15 (vv+ &) At2+... (76)
2¢ c 2c
or with

A*~%<1-,’3-"3>1-”—"'—23 ()

Therefore the second order term (v ¥ + #)/2vc? is neglected. Certainly this
term;is small with respect to unity even for radio frequencies.

The expression for the ratio of received to transmittea frequencies is

o A% oy (78)
v T ar
o] ob ob

and from Eqs. 1 and 2, the ratio of frequencies to order 1/c2 is

v dat

ob _ 1 2 2 1 _ o]

v [1 T3 (vbb ~Yp )+ 2 (Qob ’p)] at (79)
P 2¢ c ob

The derivative dtp/dtob can be obtained by considering the finite propagation

of the signal over the distance from P to S.
- p(ob)
t =ty " o (80)

where p(ob) is the magnitude of the vector

g(ob) = g(tp) - B(tob;rec) (81)

The position of the probe r(t) is evaluated at the time t when it sends the
signal and the position of the receiver R(t;rec) is evaluated at the time of

reception tob‘
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Differentiate Eq. 80 |
- da(ob)

at =ty - =% (82)
By definition

p%(ob) = p(ob) - p(ob) (83)
Therefore

p(ob) dp(ob) = _p(ob) . d_g(ob) (84)
and from Eq. (81)

dB(ob) = ;_':;(tp) dtp - fl_(tob;rec) at (85)

Combine Eqs. (84) and (85) and substitute the result into Eq. (82) to obtain the

required ratio

.3 L(ob)R(t _, ;rec)
[1 + L(ob)-(ty) ] ::D Cyal ob)-R(t o re-c (86)
o

c b c

where L(ob) is the unit vecbor_g(ob)/p(ob). Expanda Eq. 86 to order 1/c2 to obtain

dat p(ob)  p(ob) .
E.{z;gl- — + = L(oh)‘;;.(tp) (87)

The range rate $(ob) is defined by

p(ob) = L(ob)- [i(tp) - E_(tob; rec)] | (e8)

Now substitute Eq. (87) into Eq. (79) and arop terms of order higher than 1 1c2
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:9_'2 _ .p(ob)
- c

1 . . « «
o + :3 [D(ob) L(ob)‘;(tp) + 3 (vbbz-vpz) + (‘ob°.pS] (89)

Now consider the transmission from a station with position g(ttr; tr) to the

probe at the same position ;(tp) as before. The proper time at the transmitter is

2 vtr2 28, 2
ar, “=(1-—5 - =) aty (90)

and the proper time at the probe is given by Eq. (73). Thus the ratio of the

frequency YR received at the probe to that transmitted v r by the station is

t
v dat
R 1 2 2 1 tr
=== 1+ (v%v )+ (2 -2 )} - (91)
Vir [ 2c£ p tr cz p tr dtp
The relation between tt and t_is
T P
R 162 (92)
tr P c
where p(tr) 1is the magnitude of the vector
oltr) = r(t)) - Rt str) (93)

Note that in general the transmitter and receiver are not at the same point
on the earth's surface so that R(t;rec)s# R(t; tr) even when the two positions are

evaluated at the same time.
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The ratio dttr/ is found by differentiating iq. (92) and by expanding to
' dt
! P

order 1/c2 as was done for the probe-receiver transmission.

at p(tr) p(tr) . :
—tr _ d _e . .
at 1-— 2 L(tr) - R(t, ;tr) ) (94)

Therefore the ratio YR/V is to order 1/02

tr
“r p(tr) 1 . . 2 2
;:: -1-=- :5 [p(tr) L(tr) - g(ttr;tr) -4 (vp -V, . )-(!p-!tr)} (95)

where p(tr) is defined by

ber) = 1ten) - [2e)) - ey o) (9%)

The complete doppler shift over the path from the transmitter to the
probe and then to the receiver is found by combining Eqs. (89) anda (95). The
frequency vp transmitted by the probe is assumed proportional to the frequency “r
received by the probe.

% =k VR (97)

The constant k is unity for a reflection of the signal.

Therefore

(98)

[é / o
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or to order 1 / c2

v Ld
% ;:2 =1 - p(tr) : s(ob) + LE p(ob) #(tr)
r c

+ p(ob) L(ob) - i(tp) - p(tr) L(tr) - i(ttr;tr)

A RCARE A B O W (99)

The l/b term in Eq. (27) is simﬂla enough, but the quantities in the 1/c2 term
can be expressed in a number of different forms. It is interesting that the
relativistic terms, which were introduced in the expression for proper time,

are completely independent of the state of the probe at any time. Thus the
gravitational doppler shift occurs only because transmission and reception occur
at slightly different gravitational potentials but the gravitational potential
for the probe has no effect. Since both receiver and transmitter are on the
surface of the earth the difference in ‘ob_ ’tr occurs because the two points are
at slightly different positions in the luni-solar gravitational field and because
of differences in the geocentris radii of the two stations. Both of these effects
are neglected in the final doppler formula used in the ODP and thus ’ob— .tr is
set equal to gero. The difference in the squared speeds of the two stations is
retained however so that

2 2_: . . B . o B
Vob ~ Vir g(tob,rec) B_(tob,rec) g(t ,tr) R(t

tr’tr) (100)
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Of the remaining terms, p(ob) p(tr) is retained as is. However the other two
terms are expressed in a different form by substituting _é(ob) + R (tob;rec)
for p(tp) and by setting the scaler products R(tob; rec) - _é(tob; rec) and
g(ttr; tr) * B._(ttr; tr) equal to zero. In other words the time rate of change

of the geocentric radii of the two stations is assumed zero. Thus

plob) L{ob) - #(tp) - p(tr) L(tr) - _l.l(t tr)

tr;

= bz(ob) + r(tp) - [;(2: _f‘g(tob; rec) (101)

- ‘-H(t: ﬁ(ttr;tr)]

rﬂ . and the final form of the ratioc vob/v as used in the ODP is
| tr

v - - 4
_1_1‘_ ob _, _ @ftr)+ p(ob) 1 [b(ob) s(tr) + p%(ob) + H] (102)
vtr c c.e

where
H = r(tp) ° H Qb l.i(tob' rec) - pltr R(t, ; tr)
= o{ob =\VEE p(tr) =‘"tr’

) (103)
+ 3 [B_(bob;rec) - R(tob; rec) - E_(ttr;tr) . E(ttr; tr)] 7

IV CORRECTIONS TO THE OBSERVABLES

The corrections to radio observations are handled somewhat differently in
the ODP than the classiecal astronomical corrections to optical angles only. For
‘ example precession and nutation are accounted for by requiring that the calculated

position and velocity ephemeris of the probe be in true coordinates. True equatorial

coordinates are defined such that the x axis is directed to the actual vernal eguinox

163 -




REQRDER Yo, £#- 31!

JET PROPULSION LABORATORY -32- TECHNICAL MEMO 312-409

3/2/64

at the time in question. The 2z axis is directed toward the actual north pole

and y completes the right hand system. Because the earth is not a perfect
sphere, other bodies in the solar system produce torques on it that cause the
true x, y, ¢ coordinate system to vary with time. Therefore the published
positions of celestial bodies are usually referred to some fixed mean coordinate
system at a reference epoch to. A rigorous integration of the equations of motion
for an observed object requires the introduction of the coorainates of various
bodies in the solar system and for this reason, in addition to the reason that the
equétions of motion take on their simplest form in an inertially fixed coordinate
system, the coordinates of the probe are obtained by an integration performed ;n
the coordinates of to. It is then necessary to transform to the true coordinates
by applying a matrix rotation. The elements of this rotation matrix are given

as a function of t-t_ in TR 32-223, pages 66-68 and it is the true coordinates
that are available to the ODP.

The subject of paralax, that is the effect of the difference between the
position of the station and the origin of theobject's position and velocity
ephemeris, is completely included in the computation of the observables by requiring
that the range and range rate vectors be referrenced to the station.

Time abberration occurs because light, or for that matter any electromagnetic
phenomenon, takes a finite length of time to travel from the object to the observer.
Thus, although one obtains a measurement at the observation time tob, the object
was not at its position corresponding to tob when it sent the signal. Therefore,
it is necessary to compute the position at an earlier time of transmission
tp = tob - [&tb so that the observable can be compared with the computed value
directly. Unfortunately the time of transmission cannot be determined exactly

unless the range p defined in equation (39)is known beforehand. Therefore an
iterative technique must be applied to obtain [Stp. . 1LY~
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The corrections described above are all accounted for in the computation
of the angles, range, range rate and doppler frequency. However there are
additional corrections which are applied as increments to the observables. These
increments can either be added to the computed values of the observables or to the
data themselves, although in the ODP the effects of deflections in the local
verticle and refraction are accounted for by correcting the compﬁtation of the data.
When processing optical data in the ODP it must be available in the geocentric

coordinate system for the true equator and equinox at the observation time.

A. Light Time
The light time correction is concerned with relating three event times so
.' that the range vect;ors :from the transmitter to the probe and from the receiver
to the probe can be represented accurately. The time of reception of the
electromagnetic signal at the station is tob while the time at which the probe
sends the signal to the receiver is tp. A third time is required if a ground

transmitter is involved in the system. It is the time of transmission t The

tr’
reception of a signal at the probe and its transmission by the probe to the ground
are assumed to be simultaneous events.

The procedure makes use of a time t which is an approximation to t’pr and

which is defined by

b=t - i [r(t) - aeJ (104)

c
/
where r(t) is the geocentric distance to the probe at time t, ag is the mean

equatorial radius of the earth and ¢ is the speed of light. Now all quantities

‘ . required at time t'pr are computed at t instead and are then linearly corrected by

the time increment ¢t= tp -t

1657
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For example the position vector of the probe at tp is given by
t )= t) + r (t 0
}:p( p) £ )+ s, £ ) (105)

The rigorous light time correction is

Atp =ty - b (106)
while the approximate correction of Eq. (1) is

= =1
At=t, -t=2 [r(t) - ae} (107)

Therefore the increment € required to correct the quantities evaluated at t is

€ = At - Atp (108)

and an expression for [&tp is needed as a function of quantities evaluated at t.
The advantage of introducing t in this way is that when iterating on the light
time correction to find gp(tr) say, the probe ephemeris is entered only once at
time t.

Now the rigorous correction l&tp is given by

p(t s b )
Ae - —B -2k (109)

where p(tp, tob) is the distance from the probe at time tp to the station at

time t ., or p(tp, tob) is the magnitude of the vector

olto, o) = £ (t) - R(t ) (110)
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However I, (tp) is not available except in the form of Eq. (105) ana

oltps top) = (6] - B(t,) + e £ (t) (1)

or with the computable vector
P

olt, tob) = p(t, t’ob) + 6, ip(t) (112)

and to the first order in € the magnitude of the range vector is

r(t) - p(t, t,)
¢ oty o) = 86t ) + ¢, Bt (113)

If the temé ‘p/p is neglected in forming f : p/p= (p + i) * o/p then

Rt o) = (e, ) + e b (b, ty) (114)

Substitute Eq. 114 into Eq. 109 and make use of Eq. 108 to obtain

ple, ) + At ble, ¢ )

At

p = ot Bt 5 (115)
ob

Thus Eqs. (105), (108), and (115) are repeatedly applied until convergence is

achieved. The first guess at s, is taken as zero. The increment At is computed

once and for all after t has been obtained from Eq. (104). Of course the

. observation time tob is known’although the time of transmission, if applicable, is

unknown. It is approximated by the formula

67
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(116)

(117)
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B. Local Vertical Corrections

Because the observer's zenith is not necessarily incident with the geocentric
zenith, the angles computed by section III1.B. are not consistant with the observed
angles. The geocentric zenith Z' is defined by the intersection with the celestial

sphere of the line joining the center of the earth and the observer. On the other

hand the observer's zenith Z is defined by the intersection with the sphere of the

line defined by the direction of the local vertical, or equivalently by the direction
of a plumb bob suspended at the observation site. The difference in Z and 2!
naturally seperates into two effects. The largest of these is the correction from
the geocentric zenith to the geodetic zenith Z which is defined by the intersection
with the celestial sphere of the normal to the spheroid of reference. The second
effect is the small corrections to the zenith which account for local gravity
anomalies and departures from the reference spheroid. In order to éﬁmpute the
first correction the direction of the geodetic zenith is precisely defined by
taking as a reference spheroid an oblate spheroid centered at the center of the
earth and oriented such that the minor axis of the spheroid is aligned with the
earth's polar axis. Thus an equatorial cross section of the spheroid is circular
while a meriaianal cross section is elliptical. This implies that the earth's pole,

the geodetic zenith and the geocentric zenith all lie in the same meridianal plane.
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g’ ¢

Figure 8

The angle A @ between the geocentric and geodetic zeniths is simply the difference

in the geocentric and geodetic latitudes

Ag=g-¢g (118)

This difference can be related to the eccentricity e of the elliptical cross

section by

e? sin @ cos ¢
1l - ez sin‘e ]

tan & @ = (119)

/70
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or by . ' -
2 .
tan A @ = e_ii_f‘_m_ﬂ (120)

1 - e° cos2 g
The projection of P, Z and Z' on the celestial sphere along with an obJect X is
shown below. It is immediately apparent that neither the declination 6 nor the
hour angle H of X is affected by the displacement of the zenith through the angle
A @. However, corrections must be applieda to both the computed elevation angle;r
and agimuth angle o to yield the geodetic oriented values ]Y (geod) and o (geod)

respectively.

horizon

‘\~ -

Figure 9

17/
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The gecdetic azimuth angle can be found immediately by using the geodetic latitude

ra
. in the transformations between (Lx, Ly, Lz) and (th, Lhy’ Lbz)' Thus from equations

21, 52 and 53

L s8in9 -L cos @
1 tan g (geod) = x y
| L sin¢cos0+Lysin¢sinG-chos¢
x

a21)

| In other words the second rotaetion described in section IIIB is through the angle @
instead of ¢'.
Similarly the geodetic elevation angle 7 (geod) is obtained from eq. S4 with

¢ substituted for ¢ .

sin 7 (geod) = Lx cos § cos 6+ Ly cos @ sin @ + Lz sin @ (122)

The corrections from the geodetic zenith z to the local zenith z; are illustrated
’ by Figure 10. Because the local zenith does not necessarily lie in the meridian plane
Pz z", the deviations from Z are described by & north south component u, measured
positively toward the north and an east west component v, measured positively toward
the west. The latitude ¢a associated with the local zenith ZL is called the
astronomical latitude.
The correction AvH = E&‘ - H to the hour angle H is obtained directly by applying

the law of sines to the triengle P A ZL.

sin AVH = - gin v sec ¢a (123)

To the first order equation 123 reduces to

AVH = -v sec @ (124)

. There is no correction to the right ascension o or declination §. From Figure io

the first order correction to the latitude can be written

17%
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(125)

The correction to the elevation angle 7 is obtained by differentiating Lbz in

equations 51 and 5k. Note that A L, A L and A L are zero because & X
v X vV y v 2z v

and Av‘ﬁ are zero.
i

{

cc:s?lcl—}(-dl..hz

L4

and dLhz=-thd¢+Lhycos¢do

(126)

(127)

Substitute equations 124 and 125 into the above and use eq. 51 to obtain

173
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Av T= ucos g-v sin g (128)

Differentiate I‘bx to obtain Av o, the correction to the azimuth angle.

dl.hxssinrcosad 7+005781ncdq (129)
or dl‘hxclhzd¢+l'hy51n¢dg - (130)
Therefore
.cosTAV c = u sin Tsin o-v (tan ¢ cos 7 - sin 7 cos g) (13_1)
|74
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' C. Refraction

The correction to the observables caused by the bending of an electromagnetic
wave in the atmosphere is perhaps the most unsatisfying of all the corrections,
because the atmosphere is not static and fluctuations will cause unknown variable errors
ib any corrective formula. It is therefore necessary to resort to mean corrections

based o? some reasonable model of the atmosphere. Also refraction hes an effeét on

all the observables and the only way to improve the accuracy of radio measurements

beyond the limitations imposed by the atmosphere is to establish stations in space.
The first assumption in deriving a refraction correction is that the weve is

confined to a plane containing the observer, the object and the center of the earth.

In other words & signal is sent from P and arrives at S (Fig. 11).

‘ Figure 11
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The time required for the signal to travel between these two points is designated by
T, and if the velocity of propagation is given by c, then clearly in the absence of

an atmosphere
(132)

vhere p is the distance between S and P. However, if an atmosphere is introduced,
the velocity of propagation will no longer be the constant c but will instead be &
variable v. The ratio of ¢ to v is called the index of refraction n, which for

empty space is identically equal to unity.

[o4

n== (133)
v

For the case where n is a variable the time of transmission T is given by

P ,

T ,f ds (134)

v

S

The element of arc length ds is expressed in terms of the polar coordinates r and y

of Figure 11 by

2 2 2
des = dr + T d ¥ (135)

or with p = %rt (136)

- ’ 2 2
u .
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Therefore the time of transmission can be written as the integral
r
1 1 2 2
Ta: f n\/l+r p° dr (138)
R

As a matter of interpretation the coordinate rl of Figure 11 is the geocentric
distance to the transmitter at P. Thus the altitude H of P above a sphere passing

through the receiver S is
H= rl - R (139)

The index of refraction n in equation 138 is simply @ function of the physics of the
atmosphere and must be chosen once and for all from a consideration of atmospheric
measurements. On the other hand the function p is arbitrary and for each function
selected a different value of the time of transmission T can result. Therefore, in
order to specify p, & physicel law is introduced known as Fermat's principal, which
states that of all possible paths, a wave will follow the particular path that makes
the time of transmission & minimum. From the calculus of variations the integral

eq. 138 is a minimum if the following relation is satisfied.

=0 ' (1k0) '

where the function £ is the integrand of eq. 138

f=n \/l + r'2 p2 | (141)

il 0
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‘ The restriction that the index of refraction n is independent of the angle §y is now

applied so that the quantity 3f/3p is a constant k.

2
nr p

'ia_f"- —eeee . K (1""2)
e \/l-i-repa

- An evaluation of this constant at r = R yields

k = o o (143)

2 2
1+R p
o

To obtain P consider Fig. 11. In terms of the elevation angle T the law of sines
o]

gives the relation

Rcostrcos (7-0- V) (1k4k)

and differentiating with respect to the radius r yields

7
r p sin (7+ ¥) = [R sin 7- r sin (7’+ j)] '3; + cos (7+ ') (145)

When r = R eq. 145 reduces to

Rp = ctn7 (ob) (146)
)

vhere 7 (ob) is the value of 7when the vave reaches S, or in other words, 7(ob) is

the cobserved elevation engle. Thus

! . k = n_ R cos 7(01)) (147)
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and the function p that minimizes the time of transmission is

ay . B R cos 7(0‘0)

(148)
2
dr r\/n" " -n_ "R cos T(ob)
With n given as a function of the radius r, eq. 148 can be integrated.
5
dr
¥=n R cos 7(0‘0) f (149)
o v 2 2 e 2 2 ?
r - R
R n r n_ cos 7(ob)

Practically ¥ is obtained by & numerical evaluation of the indicated integral and
then by Fig. 11 the uncorrected elevation angle T is obtained.

r cos y - R

tan 7 = 1 (150)
rl sin §

The result is that a correction to the elevation angle is formed by differencing the

observed and computed angles.

AT=Tw) -7 (151)

Similarly a correction A p to the range can be obtained. A consideration of
r .

section IIIA indicates that the observed range p (ob) is simply

p(ob) =c T (152)
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‘ Therefore, from eq. 138

r

1
p (ob) = ] n\1ef 5 (153)
R ,

with p given by eq. 148. An attempt to evaluate the integral of eq. 153 and to
form the difference of p (ob) and p leads to numerical difficulties in the subtraction

of the two large quantities. However, it is & simple matter to derive the variation

dAp
r’_dpd) 4 (15%)
ar dr ar

Using equations 17 and 22 the veriation dp (ob)/dr can be written

' 2 2
dplob) o' rp (155)

dr n R cos T(Ob)

The varietion dp/dr is derived from the lew of cosines applied to Fig. 11.

2 2 2
p =r +R -2rRcos ¥ (156)
8o that
p&) = (r -Rcos y) + r R sin 'Q_ ' (157)
ar dr

At p where r = R and y = 0, this expression degenerates, and therefore the elevation

‘ angle is used instead of the angle §y in eq. 157. From Pig. 1.
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r -Rcos¥ -‘; r - R cos (158)
T siny = pcos ) (159)

Thus the range p cancels throughout eq. 157 and

dp 2 2 )
~— = PR cosT + 1l- R cos 7 (160)
dr

2
r

The variation of eq. 154 follows immediately by subtracting eq. 160 from 155.

‘ dAr" 2 2 | 2 27"
-p( r o —RcosT) - 1-R C:B (161)

dr Rno cos T(Ob) .

‘ ' The correction A p to range rate is defined by A p=p (ob) - p and so by the
r r

definition of A p
: r

. d
A =
a p at Ar p (162)

Now recognizing that the computed elevation angle Tis a function of n n, R, 7(°b)

and r through the integral of eq. 149, it follows by eq. 161 thet Ar p is also a

function of these parameters. FPFurther, if there are no time varying quantities in n

except the radius r, then the only time verying parameters in Ar p are the observed

‘ elevation angle 7(0‘0) and the radius. Therefore,

&m0

. : £

/9{{_'
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A b_aArp£+aArp d 7 (ob)

r (163)
ar 4t 37 (ob) dt

The partial derivative of Ar p with respect to r in eq. 163 assumes that T(O‘b)'is
held constant. However, this is precisely the interpretation placed on eq. 161 and
s0 this variation is already available.( The second variation 3 & p/3 7 (ob) 15 not
available and although it could be obtained numerically from the preceding formulss,
it is more usual to perform & numerical differentiation of Ar p vith respect to
7 (ob) for various velues of r.

As an example of the calculation of refraction corrections to elevation angle 7,

range p end range rate p, consider an exponential model for the index of refraction n.
@ ‘ ﬂ)
n-l#(no-l)e 5 (164)

Typical values for constants n - 1 and the scale height S are
o

-4
n -1=3.k0x10
o
S = T.315 km

A step by step numerical integration of eq. 148 with the above model for n and an
elevation of Tby eq. 150 yields Fig. l2for the correction to the elevation angle.
The results of the integration are plotted as a function of the height H for several.
values of the observed elevation angle 7(ob). Fig. 13 shows the values of the
correction Ar7 for infinite height plotted against the observed angle T(ob).

‘ Infinite height is here defined as the point where the derivative dy/dr is essentially

zero. Fig. 14 shows the integration of eq. 161 for the range correction and Fig. 15

5%

£
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2%,




o

Lt

* e B A e A e S G R o L L T T ivU U,
! m | L] B | T
; i ! i Tt IOEEE RS I R e - '
i , i ! ; [ : ! i
W..p....?,f S A - ‘ - xl:La ‘e e ,.CT.IL .i.'w... 4~ T - )
N : H I _. m - 1 *
| L R ! o ! s - S I
[ R b : . | u * ! - !
el Hs i~f- . - . S N RNUYY  S—. z-t.”i% SR :
; . : . ) i :
. o ot ' i ol :
i O : ; i R R A R R
ST S 4‘?? o : ! —— !
" i . v T
! ! - \ B '
e - Lo ” 1. DU IO b N I I
j : . 4 _
! : [T . . 1 '
YRS PSS S 4 e e - ,

R e el I . -y _v : : ......LT!..S.JJ.IA,J!--.. —
’ Ri IEIUE TONENE SO B . ! o ; ; i

RECRDER )

; : 4 - - 4. -4 N - . : [ $ooe
] - ' i
. ' '
SOPINIVD SUUR N IR JOR SRS S —
) T T - B A0t Mgl e el T
i . 1 1
\ Ny - . e L - .
) .
“ . ' '
. ‘ i
SRR I SR NORIIIN I G D . CER S SN SR Tt vuns S S
1 i i . H
| : . : H ! . N
{ [ i I T Rt i 1
i - . ! : : .
- . o H N
e ——te
+ 4 N “
L i ' \ !
. 1 + R R -
o
S ORI RSSOV

A
£16. 12

- I
: ! t ! H . ' w . ~ ! ~\/
= ' y \ I - . . L TS IS | :
U SR IS S SRR S T [ D N C w \
: : ; 1 " T R ..54.! .

.
i)
I
P
N
i
7—
!
‘_-

¢ e 4 e - - — B T
J : m

Ao
1
H
¥
{
1
1.
i
:2:_;4.7_.‘,
i1

:
;
!
(SRS S PU
L :
F I W

ey

. 5o 9N i . v
IOV MILLVAT T L MYVLOFIND |

" YR PR

i N T v YTt s YR SNV HLIMN IS 20 W Y R £ B MM i AL B R tAt S D P o, - bt s mes . . M. M o _—— - . e o




|
|

R Na L -3 11

Pf
T4
- S

-

e T ] H !
i (SR EE RN SENEIR SRS SIS SN (S SUUNIS S SR SIS S . S S i SRS W e
H P | 7 B 1
) i *, i 1 ' : | i s i 1
Co TEIR SRS IR & - : S : ‘e
[ s 4 - e . .J..l —— ST AV S , ;-1-}. + -
! { ! ! . i Lade
b ; . : i e - cmtende
i | : ' ! : i !
; ; :
e i st . g _. R e .; . Eas o
R T Ao ! Y ; R ; SRS N RS A
i . i R ; i “ Rhutil e
R . ] ! | 8 ' \ P Lt
b g I PO IS S
i q o A_ ) : m ' m .v; “..
SR B R RN I . s HE S EE TR i
.. ! ! H ; ; ' P i
SRS I S MU UL N N S N n LA A
X ! ! i ' , ; ; , Lo * :
T Ty I 1 : " I R A e + 1 T
S B! G ; iy - S S ; -
, ' ) i , P TR
! ; . ; ; . Ay
- B i RS . w‘ ; ¢ RN A
v : i
‘ m : i . A . o
RV S ——— e : b SRS (SR SN S ! . !
} i - . ' . 1 : ; i i !
N s ! . : {
Tt SRR S ; R IR .. . - R
L U PSS RSN IS N DRI SN UGN N - \AV-J —
; ; : : i ' ' I . ] i
R PR H —a i - - o e - [ S . Ll
S R U A R O N RN “ IRINER
B R toras an SO - e e . - =
S : v H ; . : ; . |
o . b e b N i : ¥ ; SO
3 . ‘ Al !
i . N i _ i : , . grc .
e e e b e B ST e RS et NS SUNS SUGNO J S ST - !
! ‘ B B ; ! ‘ : [ *“
: e 4 T i “t ] 1 - d i~ : TR
) ' ! } . A
: : { , A “ ; A i
Rl i et TR WS S L - oo -4 : - .
, | ol . _ ”
: RS : o ; - _— 4N -
; : A I_ ‘ : \ o N i
o e e e — b - B s p PSS S — . RSP U S — . : .
| ; | ; : \ : ] H 1) p--Y a\
o B ; : . . boef ek ] ; ® EOSPOE " S
' ! v ) ! i ' 1 s ' H ! H : ! ~ :
ST S P ISR CHE SN SN S 2 : S i ; .
. ] g : ; ; ' : : ! i : e
} : : i . : ! i { ! ; H Y B
. - - ' - 1 i L SR - ~ [ . 0 e b . ~ 7 . - [ SENES It ISR
' ) ; ! - ' i . : ; [ i ' 1 ; . - [ |
: IR : T : ! ‘ : : . L A9 - !
R i - TR T T I : H . 7 e 8 o )
e . ; ; ! R SISV FOESE I . SRR SUSLIUENS I -,.‘W. -
. ! T [ At ; A : T _ 1 ! , P IR S
¥ . N ! H . Lo . ) . H St 1
[ oo PR ...4 R P —— e e R e e — \ B et o SN SN e e v — +
. i . . . M v
. . RN ﬁ ...... - ' s 1 . Y\n S ! . N i . e
' ' ' N . . . ‘ . . ] ) i
e e i LS SR N - N SO .l\n\ : ST - N NG J M«r«.-. : -
’ . i I | i ..l\il\ f . ) . . H T t.
i SN I . e aiaum ESIETER R SR A . A . - RS B F O
: ; : : S IR j vy
SRt SO PN S e e SR— DT s SO SR S " -— B — -+ —r 2 - $
R ‘ L i _. ! T i ; . . DR O R
R TN SR TR oo b dad o i AN VRN DENY EURE TN 0 ¥ I S SO I SR . N DR : IS AR N
. R . * i . , a0 ! R ot . ; , ; C : . .
. ..wq - - i '0. ‘ e s FREPEEN ».\. i iemf..‘ st \,i.,., . ‘ . “te -ZL“ ............... -~ m ’ o " n;... e
SRR SCHE. © BUNIEAL SEUE I - i S b ®__ Q- e e : L 0. L : B SIS NI
H : ; S L : : T : o * . : ' ; C n s ; o
NN B R K e b : " AP [P P A AP SN . BESYI. e el SUEI S
'l : T LHYIY UININ POF T, w\ﬁkﬁwww O NV LIFI0 S A
SUYSNUNY SUNIS UG IS I . ) o Sk Al St Rt SAMEN e - . — ’ cwd
.
| - | .., '
. ’ ’ » - ’
. ! . HUZR YT s ) . v
TN RAdYE YYD NMIAL ANTEUNY 3D NO Y S TN CYING SWOHS A D42 Al WOl AT AN NEED ON O WiV ININInYRID

£I1G. 3




g Ly =311

i

0ee i

-

&

e

-
> 4

$~/

18

o i S R “ NI o ST N N P _.m..,.*‘,.W.,,W.ﬁ..m;u.,_ BT T
. i . , - ! ! - ST I I : SRR IR ; ; ;

: _ SSTOU SOOI SN SN D1 SUNOF SR S S . - A S SUE T JY Sadetdeio bl L
R D N e A . \\NNYMNG%QTMQ FAPTY “LH/IHTTTTITT “ 1T O
. _ , o L ! 7o Lk Ry :
SEFERIS TOS R e ESTEEE S e e e :f....._tl.*.lcu..!.....x.? S R S R matat SR 1 d sl
SR - kn _ e O T 0N IR (A N O o g !

R : 08 | U e “
T T . ,
o ,, ” ol bl

Tt - T i
o p ot BN
T Rttt e o o B R S T
| - ~ y - ey~ . P T SR % B
v ' . . : : ' 1.
.r!u.. B Slharh e Sennthedeld l*~.>t T T T e e e e ? - ‘CIA “
. ] . i : '
“ 5.: w - - - “ - Iy N . “a i l; - + B
~ : ; T A S
e R 1 nllel!&.w!lec T hnianes St
. T S
m.....o T M 11|1¢.ii.\ T .*\tuu_. e -
i b . ! U U i .. 4t
WA i ! ! i ' . i i ! .
i iR AL ST T ISR SN S S S N -8 R
b S L | _ R D P
T T T T I T
X RN . o . y ; N PO SETTN O
m \ . .“ “ . :
SN T Y1 O e
— e : o - : . QN 4iadd
Sl ] P o : W i
- - e e e e ~F-
g 1 . P i , A
L - e _ S M SR . 5 Lo
! i | i N R
e T A : [ + T .
SO R B R I FR S IO R SR
“ . i 1 : A R
(it 4 = o - - : 't
o ' , ' : : i K
. s i PURS N B . . - - v - . - deemfelliala
m m i o P [ : A . U S
- -t et - - D s TR S SR — e S SR
f . ! s } . i ,
L .- R ._ P ; m BN S o AR P
! Lot : . | i ! : o
PR SO AU SIS S e SN S SRR N B NS
I A e 7 St “
I N : “Qa h . O T DRI ST SO w - SO T
b B Lo : i Lo _ : ,_ : o | A
e B e B : o e 12491 ST TSP S S S Bt anbtls RIS .m NA_ -.c..m.. -
1 o _.' " . - 4 .'. , . - - - ! “ § ». . A,< - .J, ..
. .T?:L. — s eee g A R s!.,w !ﬁ.- B e - t S e (,!;_4 - _Tlr,ﬁruq:.-u..l e i
. . i R ; H : NN .
- . ‘- : . e : . . . i . . .. .. S CRRRS S ST
B R s ST B TS RSN . _ - . . « N s | ’
- , ! : L ¢ : ,, N R S i T U PO A
T 1 - y,l.. ” w- - - f” Y“ m.l [RSRSN P .. .tvltun. .l” - - i . .. A wv
Lolmd o SURURI SN JUP S oA b SR T —b S L. o o4

) .
WA OM v IV UK KIIL AN ITIND Y S A NI OV INING

NS AQ ST AB OO SaLINIYL M YELD Ow

O NVivd

R KYTE B Y




Ld-311

iAo

fit

ar en
SN

—

! g H ] I T A R A N A R B iy - Span e AR RSN AR S AN DR S ST 1T T T
! i . | “ ; M A ! e “ _, .H A_'hp\wv\h\ M b : ! , " i ,
o 2 | R A S
. S ! . . ! ; . !
- RSN PUNEN B s i LR e R ST URRE. NSNS S 4 B SO BTN P S SV NN SUNY DGO S
e . ¥

| Tt .wvm%\,\ OULYAITT OFIAIT RN s T

H . DL .. H T N N o .o PR . o ! .

' S N 22\ S0 $3 %w&@ n o . P , . M

- . RIS S e “ : Rata s S S maarhiet RESES HEEEIES SR I N SEO - —— S VP SE . . : : m ’

“ | , X _ . “, o , . : . ; . . . i i |

_. i S R Lo et ! I S L h s . . m S o O IRRERE TS S S S e

H . . i . . . H

o ae Lt e L gy vp | or | ge gz | gy N N I

i H . " B T - ~ v 4

: i ‘ : ; : ‘ i , ' ; ' ' !

i . e ! : daild EY . L m ; : R RPN SR 1 . USRI IO N

: . W i : e ! ; o ; P . ; ! ; ; P . “ , o

SUORPINE SRR ot RS . . ! | : : . H . -

I e L e B e e | B SR e o B

NS ] , : . R S . L 4 ; TS RO OOt NN COPURN SO OIS FOERE ANt
. i o ! i v L. ; ¢ , ! i . ,, “
R PO ocedin e -—— e — SRS SN SRS - . S . . +
i : . } } ~ i S ’Il/ i oo : , ;. i
s = . - TR RS R N o W R S L - * Ao - SRTE R . - SBERIS KPS St
: . ; ! ; P ] : . : ‘ i il
SO SRS WU SN R U ——de b L R : : USSR SV I S
. ) ' - : y : . M . N T \di]

AN I P P Y e TS R
: : | ” i m t : { ’ ; ' N IS ' : - E 1o
e T W b - e T T N e S B S
w ‘ . i | ! Sy . ﬁl.‘ ' ] | . . ' B
0 - ; Sod e o R LI - o ) - . . ” ,,,,, B
: ! : ” : : : : ; ! “ : ‘ '
BRI S S N - SRS DU TN SURSUY S - . - : : : ¢ -

- ! " T R M : S I X “ Ul i O : -
. : ! : i ; . : : : | i : ; N L
o e e e - -t . ; . ' o LA 3 o . [ S TFSY S S
(O R A N S W A R T T | . N TE
M i . i ! M M Pl ; | R i Pl
- e S R ; . U G : N, <5 B
NESE NENEEE N d TR T
; RN BT St s S .wi B B S I.ﬂ..» -~ - e y— e =]
= AR R OSSN M : 1 N - : " L e
, : ! te i ‘ v o L B v iR

. : I ! S R : : ! w” 1.
B m u_ m “ . R R R , C ]

3 S i RS ; i : + DI IR B W i x~ .
ST SNNUSSUIE SO S ' ; RS U S e - D T : -

: ' w : N ! T ' s ! i o H o
e . : RN SR B o ; ; , " E S ;,..”L Ll

) . f : : | : ! . . L ! : ' .
.rl»ltﬂ..l..(: poms ot =t Tt ’ ettt - -t : : N ,. ,

S ST EIUU O N Y m i : . m “ R of

: . : w i .m o ; i ) N . I tiaie

= st S S TR . : oot w i - ”

i i { ; ' . 3 : ; i - . i : 3 :

A U N . . ajen N : o B S SERUN SRR T DA Jo B I IR Ry
: I ' ) B : : : N ) »ORbiiiey Sheat o
. ‘ : . s ! i , ; e [ B . OM ! i
“ , ! : | ‘ 4 , : A | 5
SR ¥ : A EO T S . SRR . - ; ; (O PO R : “ -
. . . o : ) “ N : : 1 : ! # , . : I

- o e § e e + - - PRNIPIOR P - “ - . . T ” [ ol SR SRFEOR R P + -

' : i : . v Cy Do : 4 : . , : : : . : L e
e e - -y \.;4 R L_d.. el - i- t,L.r.. - * Ll - [RS R . . PPOUIN S N
v‘“. . S B } s o : A 1 LIEEES R DR I o : L v |

mends B S8 s bl S A TE NI NP e _ : : : . . 4

; S SN I AR T T T S AR I I e mae
L L " . NS R : " “ ” i i _. N T _ - ,1 e e - e : - - )nw -

- ! N ; ) B i i . 1 . T r ; ! N g ! : : o
e Ly SRS SR PRSI SPL St SRVORUI EAG SIS SSUPS SO (Il S SRS ; — S : : PSS (SRS SRR SUNIE SUNY NESE

B i T T ! o Y I R T . I N A i !
P S 4. - Cim I, IRV B e RN RSCAS R L EFRERN NS SN P ; i .

N : : _ : ! S R S I s ' ! ]
: ; | ¢ : !
, — e PR R : i I 1777 T R R R R
! i ; : ' N e " " ! : :
R . : SESUEN [ P U0 M AP ROSTREY NURES FUDOY FOH VDA AN LN L “
: : i § : A i . l~ : !
.

. ) T

ANQIGIA O T

AR

Gz LuIlam Y s’ -nw~. ON

COXRIAYE (N HARY I

184




T o 4 v Rt B B e ele o . v T T R
* i tol . N t . ! m ! ; . _ “ _ 0 i
g oo ” : - ? ..... e e i : . ' H . o . B

RS N . ; _ i (. : : | .
] oy ? ¢ g e R :

S S R N N A o ,
SRR PSSP AN JUUR UK OURS UUNG IO EE LI IS T DO -
m ol RN N
S : i - i _ —
m et L R IO O DRSO T
SECPERERS NN JON 15 SERS SN SN SUUUUSSEUUN SRS SURI YU Y SOONS SUVSLA
; “ y ! ' : I R ,. a
! ! ¥ ” ! : :
' . w B .... v I H ;
PRONUNY FURN U TSN S g-i : i ! :
| . ¢ . i ! ; " :
¢ 1] . !Ml H N u ~ “ B
S R A RS S O O L O O A I N
SIS IEE Aol Sorrt EEEY STECERR RS WSO NUUNSURGE S SN SRS NN NN DTN SIS S SISV SN S ST
P b 1 o “ ! ! P m - S Y
i . - ey 4 ﬁ . _ , : . '
! | . H ! ‘ 7
. B ' R IR ; ! i 1 ' 1 M
N DTS S NN oSt JENENENN SN S J SR R R e Heegede o
! ! w: [ by i ; 1 ] q B : ;
p ———d s : s . i .
- ! ' N T - v
iy | - .. - . LI T 4
f.r.... : -3 s S
: i i ; ;
. v ol
' v + o
. 'l.'. - - . e . “ i m
) M ! -a.,wln . RO IS S Ll
3! ; i ;o JOS SO B T
X : s _ “ . — “
o oy ; . , : i ! “ :
" - SR SRS O N S SUUIS SUDES RN TDUTE I AN SRS R : ! ; SIS
2h . i ; ! . SR B T S St i T
B v . . ; “. i i i i :
b “ . ﬂ _ ‘ .
R Rt Lo } : : : q M
By : : Ji.;r PER N - FeRE SENITIES ST
- : g ! ! i i i )
! X : . ;
RESTEN o4 ; P . : :
: : [ SN SUNS RNSUSTIUIG SSURESIN NUDUS IS VRS S
i : : : 3 I R B
RE H
T T
i ‘ S ! : ; _
W SRTIEE ISt COIS P S SRS SRS SOV SO VU SN SUNUN SN NS SR Y RA N
. 1 Cd : ! ] i ‘ 7
- S NN W S ; ; L
: ! T -+ ! . t
el - eyl S .....P,. ..M N ; _. \ o ' ¥
! : -}~ SRR S S s A = =

O DU

i

S SO
e, -

i
i .

it
SRERE el S
!
3
i
i

H
| P . !
. SN SUUSS SHESY [N S
H s
:
RS AR St aae BB
i
i

i
. : / —
v 1« - . '
. t L : N Lt . - s T A )
[ RIS M . 1. . o ! \17 HEN
17 w - i B R T LT Eus SN SN [N SO S
LN p _. A IS ; o
. | i + *
] . . i N N
} ! - : . i Ll : ! s
Theeae [, s . o i ! i co
¥ y : i JERNCN B RS SLCIS REPRY Pppa PR B,
; 1 “ ; , !
R SERTS Sa Ay s : i ! :
H ‘ ! ;
1 e D ’ !
; - . e .
T ] _w M
. , | o : : . ..
PR N . it 4 s _ :
VRNPES JARS DUVRY DTS SR NP B en ORI S

|
] Co

GRS RSS2 S T ) A
. FEC 0 R N | NEEES NN A A
: el (2 20! €220950 /5 , I R R O S A T B A
M lﬂ h E . M IMI \qu:y; - 4“ e R )xw,:. ..H.:....‘ lTW‘ oD R RSN, .-”m,ic.,.

.
. o6t MBI £V N AN YT NG M s %k e BLD A S S et Smt.dw ~ et ™ Cmdews s
- - — . e L S il LY . AT S Ll ‘e ¥ DN R — I




5 RE-DRORR N £ /- 34/

JET PROPULSION LABORATORY -51- T. M. 312-409
3/24 /64

‘ shows the corresponding correction at infinite height in a similar fashion to Figures

? 12 and 13 respectively. For the range rate correction the result is plotted for

infinite height only. The variation 3 Ar p/ ar is zero but a numericel differentiation

of Fig. 15 yields Ar p/37(ob) as 8 function of T(ob) according to Fig. 16. The

| corresponding correction to range rate can be obtained; by multiplying 3 Ar o/ 37(ob)

‘q ‘ by the elevation angle rate 7(bb). For example, if T (ob) is on the order of the
angular rotation rate of the esrth, the cofrection to range rate at an elevation
angle of five degrees is about -0.015 meters per second. This is approximately the
situation for range rate observations of a distant planet or space probe. For a
near 6'b,1ect such as an earth satellite, however, the correction to range rate can
e‘qsily exceed one meter per second.

The final correction to the angular observations is obtained by a direct

. application of A 7, the correction to the elevation angle. Because of the assumption
that the signsl ;rom P to S travels only in the plane containing S, P and O, there is
no correction to the azimuth angle o. The correction to the declination angle § is

derived to the first order in A7 by differentiating Lz in eq. 6.
r
cos 8 A 6=A1L (165)
T z
From equations 52, 53 and 5k '

L =-1 cos ¢+ L, sin ¢' (166)

-

andArLz--AthxcosQSi-Athzsin;t (167)

) ™
1\
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‘ut from eq. 51
AL = sin7cos a A 7 (168)
r hx r
A L = cos TA T | (169)
r he r :
and
i cos § A 6 = (cosT sin ¢' - sin7 cos ¢ cos ¢') A T (170)
r r

Similarly the correction to the hour angle is

. where

A H= - A ® : (171)
r b of
2
cos @ sin H 7
AL = A ' (172)
¥ c032 T gin ¢ r /

It should be pointed out that the above corrections are applied to direct angular
measurenments only. Thus for optical observations the refraction correction is
applied to angles obtained through the use of an instrument such as a transit circle.
For the more usual photographic measurements the refraction correction is applied
differentially in the process of reducing the photogrephic plates to usable angular
observations. Of course for radio observations the refraction correction is alweys
applied.

For purposes of calculation in the ODP, empirical interpolation formulag for

Ar p, A p and A T are used in place of the actual curves generated in this section.
T r

. They are given in T. M. 33-168.

W ~?
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. D. Aberrstion

In addition to the light time correction described in section IVA , the apparent
position of an object is further affected by the motion of the observer in space.
Text books in spherical astronomy give the eppropriate aberrational corrections to
the right ascension ® and declination § for an earth based observer.

At present the accuracies in radio angles are not sufficient to include the
sberrational correction and 4t is not included in the ODP. However, future observa-
tional refinements, especially in optical angulsr measurements from a manned vehicle,
could meke such 8 systematic correction sensible.

. It should be noted that the aberrational correction to doppler frequencies was
included in section 1IID where the approach wes to include relativistic effects in
the derivation. In other words the sberrational effect is & direct consequence of the

| special theoxry of rehﬂvity

190
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. Regression Coefficients

In the application of the estimation formula eq. 11 the coefficients that relate

variations in the parsmeters x to variations in the data z are required. Also in the

formation of the parameter coveriance matrix T, ‘both the coefficients for the para-
X

meter set x and for the parameters Y, which are not estimated, are required. In other

words the matrices Ax and Ay mst be evaluated so that the nature of the variational

expregsion eq. 173 is known.

bz = A Sx+A &y (173)

For purposes of computing the variational coefficients it is not necessary to

distinguish between the parameter sets x and y and to simplify the discussion we will

‘ consider the evaluation of the regression coefficient matrix A defined in terms of the

totality of parameters g.

6z = A § g (17k)

However, it is necessary to partition the perameters q into the following sets.

1. X

2. X
~o

w
»
Ip

k. b

State variables

State variables at epoch to

Total of all constants affecting the state X

Constants used explicitly in the computation of the data

In the ODP the state variables are always the true geocentric equatorial cartesian

components of position and velocity. The parameters a are those constants that enter

into the computation of the trajectory of the probe. For example the sstronomical

‘ unit, the masses of various bodies in the solar system and a solar radiation pressure

constant are included in 8. On the other hand constants such as the geocentric

Bl
$)

[ T



- a ’ : ) : p rﬂ (X} 1
. ' - . . . 5 R i‘gf it )ij é 9! 3 I T 1
S R |
- JET PROPULSION LABORATORY -55- T. M. 312-409 |

3/24/64 '
coordinates of the tracking stationsk are included in b and affect only the computation .

of the data themselves. Thus the collection of data represented by z can be written

as & function of the state varisbles

X , constants b and the constants & which can
- enter into the calculation of z both explicitly end implicitly through the state

varisbles.

z=z (X, 8, 1) (175)

In practice the data admisseble to the ODP do not contain the constants a explicitly

and eq. 175 can be written in the specislized form

z =z (X, b) (176)
The variation in z is

z=A + A §b 177
6z = A 6X+A bp (1T

However, lthe variation §X in the state variables is further related to variations in

the initiel conditions 50 and the constants & through the solution X to the equations

of motion.

=X (X, 8) (178)
o]

The variations are given in terms of the state transition matrix U and the parameter

, sensitivity matrix V.
o

/62
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When eq. 179 is substituted in eq. 177 the required deta variations are given in terms

of the parameter set g and the regression coefficient matrix A is specified.
z2=A USX +A Vpya+A b 180
6z =A Ub X +A Voa+h 6D - (180)

Clearly the matrices Ax and Ab can be evaluated through formulas obtained by forming
the differentials of the various expressions for the observables as given in section
IITI. These differentials are given in section VB. However because the solution X

to the equations of motion can not be written in closed form it is necessary either
to find approximate express;’tons for the U and V matrices, evaluate them by finite
differencing or evaluate them along with the equations of motion by numerical integra-
tion. It is the latter method that is used by the ODP. In other words the equations

of motion can be written in the form
X=X (X, 2) (261)

and the first variation in g is

6X=©5X+ 868 (182)

vhere expressions for ©and § can be developed easily once the equations of motion
ere specified. They are given in section VA. Substitute eq. 179 into eq. 182 to
obtain the variation in the equations of motion in terms of variations in the parameter

set q-

ai-euol_to*f (ev+3)sa (183)
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Also eg. 179 can be differentiated with respect to time in order to obtein the seme

variation.

6X=U6X +Voa (184)
o
Thus in order that the variations in the parsmeters be arbitrary, it is necessary

that the coefficients in equations 183 and 184 be equal.
U=guU (185)
V=@V+s (186)

In the ODP equation 185 is numerically integrated step by step along with the
equations of motion, eq. 181. Note that the solution to eq. 185 is dependent on
the solution to eq. 181 because the matrix @ is a function of the state variables
X. The solution to eq. 186 could also be obtained along with X and U by the step
by step numerical integration. However in the present version of the ODP the
matrix V is evaluated by quadrature formulas in e separate computation. Thus the
solution to eq. 186 is written in the form
t
We) =) v (s (Mar (267)

o

To verify that this is a solution to eq. 186 differentiate V(t) with respect to time

t

. . -1 -

v-uju §d-r+UUl§ (188)
A |
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S =1
But from eq. l&?theintegnlfu $ 4 7 is given by
' )
i -1 -1
jU bdr=U V (189) -
[

and with equations 185 and 189 substituted into eq. 188 1t simplifies to

\;-9V+§ (190)

which is equivalent to eq. 186

To summArize, the regression coefficient matrix A is computed by the following

procedure.

1. From the numerical integration of equations 181, 185 and 187 obtain the
matrices U and V at the times associated with the data set z. The
expressions of section VB are used for the evaluation of @ and § required
for the integration.

2. From the formulas of section VA evaluate the matrices Ax and Ab at the data
times.

3. Form the matrix products Ax U and Ax V and collect the results to obtain the
matrix A as indicated by eq. 180 .

Of course ‘,;in préctice the matrices Ax U, Ax v, Ab and finally A are constructed one
row at a time where each row corresponds to a particular type of cbservation at a

particular time of observation.

4
i

7

P
ya



L S REORDER tg. ¢4~ 3 01 |

JET PROPL | —59- T. M. 312.409 z
. PROPULSION LABORATORY 59 R 1

| . A. Varistions in the Accelerations

In this section expressions are derived for the elements of the matrices ©and §

which are simply the linear coefficients in the variational relationship of eq. 182.

It is convenient in specifying the elements to partition the vector X into the position ‘

coordinates r and the velocity coordinates r. Then eq. 182 can be vrittem as follows

6_1._‘ 8r
(.. R .) = e(. e .)4. 388 (191)
6r 6

It is also convenient to introduce the following notation. Suppose & matrix contains
th

8s elements a set of partial derivatives so that the element in the 1th row and J

column of the matrix is axilay J'. Then we designate the matrix itself by the notation

(3x/ay). Thus the partitioned form of the © and § matrices appears as given below.

————
(L A B 4

I
et e
. g ————
LI - >
LI L K
Pl S

r |
e={-..7." . (192)
( af)j 2T
ar [\ ar
a_x'_-)
8
$ = e o o o+ e (193)

o e i e
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N

R

‘ The six matrices in equations 192 and 193 can be eveluated by writing the equations
of motion, eq. 181, in the expanded form. First designate the components of X by

(xl, x2,fx3, X, X, x6). Then

x.
n
® .

(194)

3 .
]
<.

x.
L]
N .

X =x (E)E)

X =y (x, 2) (195)

X =z2(zr )

’ and it is obvious that 1f the matrices in equations 192 and 193 represent the
coefficients in eq. 182, then the matrices (a_rl/a_x:) and (a_.z:/a_a_) are always null
and for conservative force fields the matrix (ar/ 3_1'_') is null also. In addition, the
matrix (ai-/a_i;) is the 3 x 3 unit matrix and therefore the only matrices which are
non trivial to evaluate are (ag/az) and (a?_r'/aa). Taken together these two matrices
describe the total first variation in the accelerations of the probe.
For the equations of motion used in the ODP the accelerations can be written in

8 fairly compact form by employing a vector h(x) defined by equation 196.

X
B (x) =- (196)
3
x
where x is the euclidean norm or megnitude of the vector x
2 .
X =x°x » (197)
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' The geocentrié accelerations are then written in the vector form

E-u39(5>+u“[a(s-z‘)+a(s&)}

*Lulp-z)ene)]
pP

z Jg_(r, ,a)- (1+7B)h(r-r) (198)
ns=2

‘ In the ODP the equations of motion are always referred to the geocenter and thus the

first term in eq. 198 is the two body acceleration on the probe by the earth. The

second and third terms represent respectively the lunar and solar perturbations

while the fourth gives the perturbative accelerations of the planets. The fifth term
represents the bulge perturbations which result from the failure of the earth to act
like a mass point and the last term is the perturbative acceleration from solar
radiation pressure. The Poynting Robertson force is neglected. The constants in

eq. 198 are the various gravitational constants for each body concerned and are

defined as the product of the universal gravitational constant and the mass of the

body . Aﬁso the zonal harmonic coefficients are given by (J , J2, e« . .) and are
1

defined in terms of the assumed potential function for the earth.

‘ UE-.”§ 1 - Z J_ fg P (ein §) (199)
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’ nth order legendre polynomial. The constants in the radiation perturbation can be
taken together as a single proportionality constant. Howe;er, in forming the vari-
ations the quantity'?'B will be allowed to vary rather than the whole constant. This
is done for convenience since'7'B is dimensionless and is restricted to the interval
0< 73 < 1. It is thus essily interpreted when corrected by the estimation procedure.
The constant ] is the albedo of the effective area A_ . of the spacecraft end B 1s &
constant that depends on the reflection law of the effective area. The mess of the
spacecraft is m and cl is a congtant related to the solar constant.

In addition to the equations of motion being restricted by the ODP to the geo-
centric form, & further restriction is imposed in that the equations are in units of
kilometers and seconds of time. However, the solar and planetary ephemerides are
given in units of astronomical units while the iunar ephemeris is given in units of
earth radii. Therefore, two more constents are imbedded in eq. 198, the conversion

‘ factor AE which is the number of kilometers in an astronomical unit and RE which is
the nunber of kilometers in 8n earth radius. The ephemerides available to the ODP
are assumed perfectly accurste and the only way to change the positions of the moon,
sun and planets is by changing AE and BE' This situation is unsatisfactory for
certain problems, especially where information on astronomical constants is being
extracted from probe tracking data. However, in the version of the ODP described
in T. M. 33-168 this is the situation and the derivations presented here are based
on the assumption that the ephemerides are perfectly accurate. As & consequence the
earth radius 8 used in the potential function for the earth is not necessarily the
same number 8&s the esarth radius RE used to scale the lunar ephemeris. .In the program
e is a fixed constant and any varjation in the harmonics of the earth's potential

J and J, .

function is absorbed entirely in the coefficients J2, 3 L

177, .
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Finally to completely specify the equations of motion the form of the vectors

Eh are required. By taking the gradient of eq. 199 they can be identified essily.

2
3 x 8 2
N "1-23 (-E) (1-5sin” 5) -  (200)
r
r
2
3 z 8 2
5:.2'2 e (__e_) (3 -5 s8in §) (201)
3 T
r .
2 M x a 3 2
837 E3 E] (3-7sin §) sin X -y (202)
3 % (% ? 2 3% b
823"'5-——2- = (L-108in § + 3 sin §) (203)
r o

W ®l/a 4 2 b
g€ =-2 33 E (15-T0 8in § + 63 sin §) (=205)
8 .

r r

Before forming the variation in eq. 198 the variation in the vector h (x) of
eq. 196 is derived so that as & result the required variation 5_% can be more easily

obtained. Define the matrix H(x) by

§b(x)=H(x)6x (206)

)
o
o
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. Then the elements of the matrix H in terms of X = (xl, X, 'x3) are
dh (x) 3 x x
B o(x)=__ %~ . 3 0y , (207)
i
d x 5 3
J x b 4

where § 13 is the Xronecker delta symbol.

Thus the variation of eq. 198 is given by

6r -=',,E H(r)sr+ p“[ﬂ (r - _1_'&) (6z - 6.{&) + H (_1‘.&) 5.1:&}

+ [B(g-_r_)(bg-cz)ﬂi(g)cr]
s [ @ ® (-]

+ B (r - )(65-6_1;)+H(_x:)65-]
gyp[ £ £p P P P

C. A
- 1 rad (1+7B)K(£-£°) (65'55..)
m

C. A
-1 y(ror)p (B
m ®

+§(3)6%+[E(z—£@*a(z‘)]bnu +

A\
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The variations in the vectors g &are neglected for n > 2 and the required variations
n

in 52 are obtained from equations 200 snd 201. An additional matrix G(r) is introduced

. such that

6
652=G(.r.> br+ e _fy. (209)

u
E

The elements of the matrix G(r) are given in TR 32-223, p 81. Note that G(r) is

" a symmetrical matrix.
Also in forming the @ and § matrices the solar radiation term is assumed zero

in the (6r - §r ) variation. Therefore, the matrix (bé‘_' /3r) from an inspection of
®

eq. 208 is given by

a{:

*usﬁ(.{-.{o)*ip:ppﬂ(z-zp) (210)

It is necessary to express the variations §r , §r and §r 1in terms of constants
o0 o p
that are available to the ODP before the matrix (3r/da) can be written down. Firat

. of all consider the scaling of the lunar ephemeris.

253
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=R r radii 211
r =R I, ( ) (211)
Then under the previous assumption that § _l_'&(rudii) = O the veriation in r ¢1s
8 R
br, =r £ | (212)
R
E
Similarly
6 A
6r =x =2 (213)
o L4 A
E
® or
end 6r =r —E (214)
P P ,
E

Also the gravitational constants m and ; are expressed in terms of AE. By definition
8

P
2
w =k A 3 (215)
8 E
2 ‘
vhere k is the Gaussian gravitational constant. Therefore,
3
Sp =—2 pA (216)
8 E
A
E
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. For the planets the mess mp of & planet in solar units is introduced. Then

P p 8
eand
5 A
8y =y §m +3 4 __E (218)
P 8 P P A
E

Now eq. 208 can be written in the form

. af) u , (
= —— K - H - R
e [ )Rk 5«.)] e %%
E

n
M
i
+ Z —[H(r)-ﬂ(z-r)}rﬁA
1'1AE =i ! -1 E
L
J2
+ — +
i §26uE Z '&nan
E n=2
C.a
-1 rad p(r. 6 (/B) + h (x)
- B(c-x)6(]B) B (x) 6w

N2
O
L4

REOAER o L4 -3 11
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n 3ui
) R {9(£~£)+9(5)}6A
1=1 E 1 1"
+yu Z[E(ﬁ-}:)+§(£)]cm (219)
8 > P P P

vhere the summation on i occurs for the sun and the plapnets. Eg. 219 completely
specifies the elements of the matrix (ai/ag) as they are given in T. M. 33-168.
Two subtletieg of the above derivation should be noted.

First the solar ephemeris is given not in geocentric coordinates but instead
with respect to the. earth-moon barycenter. Thus if either ,& or “E are changed the
geocentric position of the barycenter will also change as will the geocentric
ephemeris of the sun. Further because the planetary ephemerides are referred to the
sun, & change in the geocentric ephemeris of the sun will be reproduced in the geo-
centric ephemerides of the planets. In other words equations 213 and 214 should
rigorously incliude variations in “M and "E as well as the variation in AE. However,
these variations are neglected in accordance with the assumption that the geocentric
ephemerides are perfectly accurate. In a more advanced program it would make sense
to allow the variation in the ephemerides with “M and “E along with the gensitivity

of the ephemerides to orbital elements of the earth, moon and planets.

The second subtlety arises from the condition that i , 4 and R cannot be
E M E

changed without bounds because if uE and ; are given it is possible to compute the

M
mean distence to the moon from dynamical considerations and @& knowledge of the period
of the moon. However, if RE is given it is also possible to compute the mean distance

simply by the scaling of the lunar ephemeris. This constraint between RE R “E and ,_‘“

could have been incorporated into the derivation of eq. 219 as was the similar

204
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‘ constraint of eq. 215. However, the constraint of eq. 215 must be satisfied exactly

| asg it in effect aefines the astronomicel unit. In contrast there is some uncertainty
in the relétion between RE’ gE and "h and a8 certain flexibility is retained by treating
the varintions in all three quantities. If ome wishes to apply the comstraint (eq. 220)
it is done in the ODP during the formation of the regression matrix A.

1/3

RE o (“E + “M) (220)

Without the application of the constraint, RE is considered as an independent variable

80 that the formula for the computation of a data type z is written

= 221
T =2 (uE, u“: RE) ( )

Therefore, there exists three partial derivatives, a, b, and c.

a = }E- (222)
O u
E
2z
b= (223)
3
uM
¢ (224)
3R
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. Now when RE is considered as a dependent variable the formula for z becomes a

composite function of the form

2=z ["1-:’ he & (uE u“)] (225)

and there exist two partial derivatives a' and b' which are obtained by using the

rules for differentiating composite functions.

3R
8.'-8+c_____E_ (226)
3
E
bRE
b'=b + ¢ (227)
@ LYY
wbhere from eq. 220
3R 3R R
—E._E_1 E (228)
3 ? 3 +
uz g uB u)l




RN Ly-301

~JET PROPULSION LABORATORY ~-71- TECHNICAL MEMO 312-409

: ‘ 3/2L/64

B. Variations in the Observables
In order to obtain the matrices A_and A, defined by Eq. 177 it is
useful to return to the definition of the range and range rate vectors of

section III and form the vériations of Eqs. 37 and 38.

Ae=0r- AR (229)
A=Az - Ar (230)

Thus if the variations in the observables can be expressed in terms of
A p and A _p , then Eqs. 229 and 230 provide the required elements for the Ax
“ matrix as coefficients of A r and A r , and for the station coordinate elements
~of A through AR.
‘ : The variation in range is obtained immediately from Eq. 39
pAe=p-Ap (231)
Similarly Eq. 40 can be differentiated to obtain As.

9A6+s‘>A9=g-Ag *E'AP- (232)

or substituting the expression for A p from Eq. 231 into 232 and using the

unit range vector L as defined in Eq. 45, the expression for Ab simplifies to
- l . - . s
AD‘;(E-PL)'A3+L'A2 (233)
Actually in the ODP the cartesian components of the station vector R are not
used as parameters, but instead the geocentric radius R, latitude §' and the.

longitude A are subject to estimation. The reference coordinate system is the

equatorial system of date so that the components of R are given by

has T
PRV

\&-"
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%
X =R cos #' cos © (234)
Y =R cos ¢' sin © (235)
Z =R sin § » (236)

where the sidereal time 8 is given by Eq. 44. In the station velocity vector
ﬁ , the latitude, longitude and radius of the station are assumed invariant
with time and thus only the angular velocity of rotation w of the earth is

involved as the time derivative of the sidereal time.

w=6 (237)
Therefore

X=- (238)

Y= wX (239)

| . Z=0 (240)

The variations in R and R are therefore

Ax =% ArR-zcos6Ag -YAA (211)
Ar =% Ar-zeinelAg +xAn (242)
Az=§ AB.+Rcos g g (243)

Ax = - wly ()

Ax = wly | (245)

z=0 (246)

where from Eq. 44 A=A . (247)
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The variations in the angles are easily derived by a technique due to

Herrick. Write the range vector in the form

pP=p L | (48)
Then Ae=eAL+LAs | (249)
From Eq. 46 }

ALx =-sin s cosX A\ & - cos 8 sinCXAX (250)

ALyn-sinssinc( A s+ cos 8 cos XA (251)

AL, = cos 8A s | (252)

Define two new unit vectors in terms of the above linear coefficients.

A=(-s8in X, cos X, O) (253)
D=(-s8in 8§ cos X, - sin & sin O , cos &) (254)
It is easy to show that L, A and D form an orthonormal system. Also Egs.

250,,251 and 252 can be written as a single vector equation

AL =4 cos s ACl+ DAs (255)

and Eq. 249 takes on the form

Ae=pacos s ACC+pDAs+L Ao (256)
Take the scaler product of Eq. 256 with first L, then A and finally D
tiobta'm 4
Ae=L-ADp | | (257)
. poos 8ACU=4-A p (258)
pBe-p- A, (259)
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The first of the resulting expressions Eq. 257 is identiecal with Eq. 231.
However Eqs. 258 and 259 yileld the variations in the right ascension o
and declination §. The variation in the hour angle H is obtained from

the definitive expressioxi Eq. 50
Ar = M - Aa (259)

To obtain the variations in the azimuth ¢ and elevation angle
7 it is necessary to write the range vector 0 in terms of the topocentric
unit range vector -I-'h defined in section IIIB. First of all express the

transformation equations, Egqs. 52, 53 and 54 in matrix notation

L = AL, (250)

where the rotation matrix A is a function of the geocentric station latitude

@' and the local sidereal time ©. The elements of A are

a,, = &in @' cos @ (201)

| a,, = -5in 0 (252)
a,; = cos § cos 0 (253) |
a, = sin #' 8in @ ' . (254) ?
8,, = COS @ : (285)
8,3 = cos #* sin @ (260) |

A\
o
-~
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531 = =008 ¢' (267)
*’ 83 = sin §' (259)

The range vector in terms of L, is from Eq. 248
p=pPALy (270)
and Ap = Az, Qp + pAAL, + pAOLy | (211)
The matrix /A A can be expressed in the form |
AA=A¢A¢'+A0Ax (212)

where the elements of A¢ and A, are obtained by differentiating Eqs.

201 to 209.
a3 =0 -8
A¢ = 823 Y -85 (213)

a 0 -8

33 3




DR Ny Lo - 31

JET PROPULSION LABORATORY ~76~ TECHNICAL MEMO 312-k09

3/2k [k
821 822 823
Ay = 2 82 84 (274)
0 0 0

The variationA L, is expressed in a form anmalogous to A L in Eq. 255.

AL, = A cos780 + DAY (275)
where

Ay = (sin g, cos g, O) (279)
and D = (sin y cos o, -sin y sin g, cos 7) , (217)

Therefore Eq. 271 expressed in terms of variations in the observables and

station coordinates is
Aggq_,hAo)f 0AA, coS YA a+ oAghA‘r

. oA¢ EbA¢' + 0Ag L A (218)

Agaln the vectors 51, 5‘ and _D_h form an orthonormal system and thus

AEh, A&h and % do also. Define these orthonormal vectors by .

T-an | (219)
X=m (280)
T - an, (28)

213
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also

Pa Y4

Ly = Mgl

~s

Lo = ALy
Then

~ s AL
Ag:&bpi» o.i\_cosyao+ oQA'y

~ Ar
+o£¢4¢' + 0 Lyo

and
~r AN AP AP
0 c0s 700 = A*Ao - o A'LyAP" - cA"LyA
ed A o~ AS
and 0A7 = D°Ao - og-g¢A¢' - oD Ly A

P lad
The vectors A and D in component form are

~
Axssin¢‘ cos © sin o - 8in O cos o

= gin @' sin Q sin o + cos Q cos ¢

-cos @ sin ¢

R
]

=sin7[sin0sina+ sin ¢! coaOcosoJ

+ cos @' cos @ cos ¥y
~r
Dyssin7[coso‘sin¢' sinO-sinacoaOJ

+ cos @* sin Q cos ¥

(282)

(283)

(284)

(285)

(285)

(287)
(288)
(269)

(290)

(291)
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?);ssin¢' cos 7y - cos @' cos ¢ sin ¥ (292)
s
vhile?# and E are given by
I¢x=-coso[cos¢' cos y cos ¢ + sin @' siny] (293)

';¢y=-sin0[cos¢' cos y cos ¢ + sin @' siny] (294)

-~

L¢z = cos @' sin 7 - sin @' cos 7 cos g (295)
Iﬁx = sin O [sin @' cos 7 cos ¢ - cos ¢ sin7]
- cos © cos 7 sin ¢ (296)
Zey = - cos © [sin @' cos 7cos o - cos @' sinT]
- sin © cos 7 sin ¢ ()
;82 =0 (298)

C. Inversion of the State Transition Matrix

The formula Eq. 187 for the computation of the parameter sensitivity
matrix V requires the inverse of the state transition matrix U. As the time t
from the epoch t‘o increases the matrix U becomes more and more ill-conditioned and
a straight forward numerical inversion of U can result in a considerabls leoss in
the significance of its inverse. Fortunately under certain applicable conditions
the matrix can be inverted by inspection and it is the purpose of this section to

; . . ®
define the necessary conditions under which this can be done.

# * -
We wish to express our appreciation to J.B. McGuire for pointing out that this
inversion by inspection is possible. Also the derivations, particularly the proof

of Theorem 1., were largely suggested by some unmblishaed work of 0.K. Smith.

- v
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Theorem 1.

Consider the system of differential equations

L -e(t) u; u() =1 | | (299)

where U and 8 are 6 x 6 matrices and I is the unit matrix. Now partition U

and 8 into 3 x 3 submatrices as follows:

1
31 1+ 8y,
[
8=|--------
e P
al ; 22
Y11 : Yo
U= - e e ww we w am
f
Lo : u,,

T
6, =-6,, (300)
T
127 % (301)
. e T | .
®a2 = On (302)
the inverse of the solution matrix u is given by

o T LT

22 I ™Mz
e R i R T (303)

_ T | T

il I B

{

7165
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Proof

Introduce the matrix

E=(--%-- (304)

where e is a 3 x 3 unit matrix.

Then:
E 6 =——-r-—— (305)
11; 12 ‘

and T T
t (%2 1 ®n
56 4---7--- (306)
T T
. 822 | %1z
by the conditions imposed on 8
(£0)= (28)" (307)
T
, (v'pev) = (uzeu)” (308)

or multiplying the differential equation by UTE and equating the resulting matrix

with its transpose yields

v & - (g% )T ETU (309)
because ET = -k it follows that
v 4 (-QQ)T U= O (310)
dt dat =
We recognize this expression as the derivative of (UTEU). Thus (UTEU) is a
\\'. constant given by
vEY = UT(to) EU(t ) = E (311)
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T.
Because E'E = 1 7T
EUEI=1
and
-1 T .T T

U~ =E UE=-EUE

Performing the indicated multiplications proves the theorem.
Space Fixed Cartesian Coordinatesg

We gill riow show that cartesian position and velocity coordinates
satisfy the conJitions of Theorem 1. for certain dynamical systems, in particular
for motion in a field describable by a potential function. The following theorem
is sufficient to establish this result.
Theorem 2.

Let (xl, Xys Xg X, X, i3’) be a set of independent coordinates such

that for a given dynamical system the equations of motion are of the form:

.I.‘ = fr(xl’ X.2, XB) t) r=1,2,3 (312)
Then if
ax ax’
I S
= r, s=1, 2,3 (313)
axs nr ’

the inverse of the matrix

P R R (314)

R
&I
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(315)

The symbol (ars) represents the matrix with elements ars and (xlo, x20’ x3o,

*10’ iZO’ i30) is the value of the coordinates at time to.

Proof

All that is required is to show that conditions (300), (301) and (302) of

Theorem 1., are satisfied. Beéause of independence the ©.. and 9,, submatrices of

the 6 matrix are

Also from (6)

Thus

11 12

(316)

(317)

(318)

(319)

(320)
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| @

which satisfy conditions (300) and (301). Condition (302) is satisfied by

Eq. (313) because

* * @ .« &
AX ax
. T »,

Suppose now that the motion can be described by a potential function

¢ so that in cartesian coordinates

e e = LQ_ rye
*r a (322)
Then
ax” 2
el (323) -
8 s r
and
ax’ 2
A%
" o (324)
i r r s
ax” ax's
Therefore at all points where ™ L and 3% are continuous, condition
8 o

4 (313) of Theorem 2. holds. Also if condition (312) is satisfied the matrix U
can be inverted as indicated. This is precisely the situation for the motion of

a space probe not subject to velocity dependent accelerations.

JDA/cw:bmc:11b
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